May 7, 2024
8:45am - 9:00am
ES03-virtual
Hugo Braun1,Ryo Asakura1,Arndt Remhof1,Corsin Battaglia1,2,3
Empa-Swiss Federal Laboratories for Materials Science and Technology1,ETH Zürich2,EPFL3
Hugo Braun1,Ryo Asakura1,Arndt Remhof1,Corsin Battaglia1,2,3
Empa-Swiss Federal Laboratories for Materials Science and Technology1,ETH Zürich2,EPFL3
Hydroborate solid electrolytes offer high ionic conductivity and are stable in contact with alkali metal anodes, but are challenging to integrate into batteries with high-voltage cathodes [1-3]. Here, we demonstrate stable dis-/charge cycling of solid-state lithium-ion batteries combining a Li
3(CB
11H
12)
2(CB
9H
10) hydroborate electrolyte with a 4 V-class LiNi
0.8Mn
0.1Co
0.1O
2 (NMC811) cathode, exploiting the enhanced kinetic stability of the LiCB
11H
12-rich and LiCB
9H
10-poor electrolyte composition [4]. Cells with lithium metal and indium/lithium anodes achieve a discharge capacity at C/10 of ~145 mAh g
–1 at room temperature and ~175 mAh g
–1 at 60 °C. Indium/lithium cells retain 98% of their initial discharge capacity after 100 cycles at C/5 and 70% after 1000 cycles at C/2. Capacity retention of 97% after 100 cycles at C/5 and 75% after 350 cycles at C/2 is also achieved with a graphite anode without any excess lithium. The energy density per cathode composite weight of 460 Wh kg
–1 is on par with the best solid-state batteries reported to date.
[1] L. Duchêne, A. Remhof, H. Hagemann, D. Battaglia, Energy Storage Materials, 2020, 225, 782
[2] L. Duchêne, R.-S. Kühnel, E. Stilp, E. Cuervo Reyes, A. Remhof, H. Hagemann, C. Battaglia, Energy & Environ. Science, 2017, 10, 2609
[3] R. Asakura, D. Reber, L. Duchêne, S. Payandeh, A. Remhof, H. Hagemann, C. Battaglia, Energy & Environ. Science, 2020, 13, 5048
[4] H. Braun, Ryo Asakura, A. Remhof, C. Battaglia, ACS Energy Lett. in press