April 22 - 26, 2024
Seattle, Washington
May 7 - 9, 2024 (Virtual)
Symposium Supporters
2024 MRS Spring Meeting & Exhibit
QT01.09.03

Bidirectional Phonon Emission in Two-Dimensional Heterostructures triggered by Ultrafast Charge Transfer

When and Where

Apr 26, 2024
8:45am - 9:15am
Room 420, Level 4, Summit

Presenter(s)

Co-Author(s)

Archana Raja1

Lawrence Berkeley National Laboratory1

Abstract

Archana Raja1

Lawrence Berkeley National Laboratory1
Atomically thin van der Waals crystals like graphene and transition metal dichalcogenides allow for the creation of arbitrary, atomically precise heterostructures simply by stacking disparate monolayers without the constraints of covalent bonding or epitaxy.While these are commonly described as nanoscale LEGO blocks, many intriguing phenomena have been discovered in the recent past that go beyond this simple analogy. In this talk, I will describe how we use ultrafast electron diffraction to uncover the role of layer-hybridized electronic states as a powerful route to control ultrafast energy transport across atomic junctions [1]. We measure the simultaneous heating of both WSe2 and WS2 in a WSe2/WS2 heterobilayer on a picosecond timescale after selective excitation of the WSe2 monolayer. This observation cannot be explained purely by phonon transport across the interface. Through first-principles calculations, we identify electronic states hybridized across the heterostructure that allow phonon-assisted interlayer transfer of photoexcited electrons, which leads to bidirectional phonon emission and simulatneous heating of both the layers.<br/><br/>[1] Sood, A., Haber, J.B. et al. Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer. Nat. Nanotechnol. 18, 29–35 (2023)

Keywords

electron-phonon interactions | quantum materials | van der Waals

Symposium Organizers

Ajay Ram Srimath Kandada, Wake Forest University
Nicolò Maccaferri, Umeå University
Chiara Trovatello, Columbia University
Ursula Wurstbauer, Technical University of Munich

Symposium Support

Bronze
LIGHT CONVERSION

Session Chairs

Nicolò Maccaferri

In this Session