April 22 - 26, 2024
Seattle, Washington
May 7 - 9, 2024 (Virtual)
Symposium Supporters
2024 MRS Spring Meeting
MT01.11.08

General Protocol for Training Machine Learning Interatomic Potentials for Ionic Liquids and Battery Solvents

When and Where

Apr 26, 2024
4:30pm - 4:45pm
Room 320, Level 3, Summit

Presenter(s)

Co-Author(s)

Zachary Goodwin1,Nicola Molinari1,Julia Yang1,Albert Musaelian1,Simon Batzner1,Boris Kozinsky1

Harvard University1

Abstract

Zachary Goodwin1,Nicola Molinari1,Julia Yang1,Albert Musaelian1,Simon Batzner1,Boris Kozinsky1

Harvard University1
We develop machine learning force fields (MLFFs), based on the equivariant graph neural networks with NequIP/Allegro [1,2], for representative ionic liquids and conventional battery solvents. As capturing the complex intermolecular interactions are subtle, and the dynamics of these electrolytes/solvents are quite slow, training a potential for these systems is not always straightforward. We develop a general, automatable protocol for training MLFFs for complex, multicomponent liquids, which efficiently samples representative structures, to collect diverse, uncorrelated molecular configurations for training. This approach is shown to yield reliable simulations in the NVT ensemble, but not always in the NPT ensemble, where we find densities significantly lower than expected from our DFT calculations. We develop an approach to remedy this issue, and test it on a number of electrolytes/solvents to ensure it is a robust method. In addition, we study the question of model transferability, the effect of long-range interactions and uncertainty of the model.<br/><br/>[1] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari, T. E. Smidt, and B. Kozinsky, E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun., 13, 2453 (2022)<br/>[2] A. Musaelian, S. Batzner, A. Johansson, L. Sun, C. Owen, M. Kornbluth, and B. Kozinsky, Learning local equivariant representations for large-scale atomistic dynamics Nat. Commun., 14, 579 (2023)

Symposium Organizers

Raymundo Arroyave, Texas A&M Univ
Elif Ertekin, University of Illinois at Urbana-Champaign
Rodrigo Freitas, Massachusetts Institute of Technology
Aditi Krishnapriyan, UC Berkeley

Session Chairs

Rodrigo Freitas
Rebecca Lindsey

In this Session