Apr 23, 2024
2:30pm - 3:00pm
Room 436, Level 4, Summit
Benjamin Tee1
National University of Singapore1
Neuromorphic architectures can enable significant power efficiencies in machine learning tasks. The use of soft, organic materials can allow for integration of sensing, actuation and data transmission onto neuromorphic platforms. In this talk, I will share our work on developing asynchronous data transmission systems<sup>1</sup> for neuromorphic in combination with soft flexible electronic materials and devices<sup>2</sup>. Using such systems, we can generate unique datasets containing high speed sensory data, for e.g., a MNIST like tactile dataset<sup>3</sup> and apply them to use cases in robotics<sup>4,5</sup>.<br/><br/><br/><b>References </b><br/><br/>1. van de Burgt, Y., Melianas, A., Keene, S.T. <i>et al.</i> Organic electronics for neuromorphic computing. <i>Nat Electron</i> <b>1</b>, 386–397 (2018). https://doi.org/10.1038/s41928-018-0103-3<br/>2. Lee, W. W., Tan, Y. J., Yao, H., Li, S., See, H. H., Hon, M., Ng, K. A., Xiong, B., Ho, J. S., & Tee, B. C. K. (2019). A neuro-inspired artificial peripheral nervous system for scalable electronic skins. <i>Science Robotics</i>, <i>4</i>(32), eaax2198. https://doi.org/10.1126/scirobotics.aax2198<br/>3. Yao, H., Yang, W., Cheng, W., Tan, Y. J., See, H. H., Li, S., Ali, H. P. A., Lim, B. Z. H., Liu, Z., & Tee, B. C. K. (2020). Near–hysteresis-free soft tactile electronic skins for wearables and reliable machine learning. <i>Proceedings of the National Academy of Sciences</i>, 202010989. https://doi.org/10.1073/pnas.2010989117<br/>4. ST-MNIST -- The Spiking Tactile MNIST Neuromorphic Dataset, 2020, https://arxiv.org/abs/2005.04319<br/>5. Taunyazov, T., Sng, W., See, H. H., & Lim, B. (2020). Event-Driven Visual-Tactile Sensing and Learning for Robots. <i>Robotics: Science and Systems</i>.