Apr 25, 2024
10:30am - 10:45am
Room 328, Level 3, Summit
Atul Shukla1,Manasi Pranav1,Bowen Sun1,Rong Wang2,Larry Lüer2,Christoph Brabec2,Safa Shoaee1,Dieter Neher1
University of Potsdam1,Friedrich-Alexander-Universität Erlangen-Nürnberg2
The performance of organic solar cells has made large strides with power conversion efficiencies exceeding 19%, and the milestone of 20% well within sight
1. The emergence of non-fullerene acceptors (NFAs) has played a vital role in these advancements
2. Particularly, organic blends comprising of NFAs with polymeric donors (D) having low energetic offset between the ionization energies (Δ
EIE) of the two components have demonstrated excellent photovoltaic performance with superior charge generation yields in conjunction with reduced voltage losses
3,4. However, the process of free charge generation and the origin of performance limiting loss pathways has been a subject of debate. More specifically, the critical role of low Δ
EIE on the voltage losses and charge-generation efficiencies ask for a more detailed analysis. In this work, we systematically explore the role of energetic offset through methodical assessment of free charge generation process in a sample set of Y-series acceptors (Y6 and Y5) with well know polymeric donor, PM6. Herein, the PM6:Y5 material system is found to have a relatively lower energetic offset as compared to high performing system PM6:Y6. Our sample set uses the NFAs Y5 and Y6 blended with different molecular weights of the polymer donor PM6, spanning a large PCE range from 15% to 1%. This poor photovoltaic performance is further accompanied with pronounced field-dependence of free charge generation as demonstrate
via time delayed collection field (TDCF) measurements. Using transient absorption spectroscopy (TAS), we find that the poor performing PM6:Y5 material system suffers from inefficient charge transfer at the interface, ultimately limiting the overall photovoltaic performance of Y5 based blends. We highlight the significance of driving force through field-dependent TAS measurements by demonstrating concomitant increment in free charge generation and exciton dissociation yields under the application of external electric field. These results supported with bias-dependent steady-state and transient photoluminescence studies provides a holistic view of the overall process and propounds that poor exciton dissociation is one of the main performance limiting channel in materials systems with diminishing energetic offset.
References.1. Liu, F., Zhou, L., Liu, W., Zhou, Z., Yue, Q., Zheng, W., Sun, R., Liu, W. Y., Xu, S., Fan, H., Feng, L., Yi, Y., Zhang, W., Zhu, X., Organic Solar Cells with 18% Efficiency Enabled by an Alloy Acceptor: A Two-in-One Strategy
. Adv. Mater. 2021,
33, 2100830
2. Armin, A., Li, W., Sandberg, O. J., Xiao, Z., Ding, L., Nelson, J., Neher, D., Vandewal, K., Shoaee, S., Wang, T., Ade, H., Heumüller, T., Brabec, C., Meredith, P., A History and Perspective of Non-Fullerene Electron Acceptors for Organic Solar Cells.
Adv. Energy Mater. 2021,
11, 2003570.
3. Bertrandie, J., Han, J., De, C. S. P., Yengel, E., Gorenflot, J., Anthopoulos, T., Laquai, F., Sharma, A., Baran, D., The Energy Level Conundrum of Organic Semiconductors in Solar Cells.
Adv. Mater. 2022,
34, 2202575
4. Zhong, Y., Causa’, M., Moore, G.J. et al. Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers.
Nat Commun. 2020
, 11, 833.