Apr 23, 2024
5:00pm - 7:00pm
Flex Hall C, Level 2, Summit
Ally Hurd1,2,Awwad Alotaibi2,Obaid Alqahtani2,James Doyle1,Brian Collins2
Macalester College1,Washington State University2
Ally Hurd1,2,Awwad Alotaibi2,Obaid Alqahtani2,James Doyle1,Brian Collins2
Macalester College1,Washington State University2
Printable and flexible organic solar panels are promising sources of inexpensive, large-scale renewable energy, where panels can be manufactured by printing from polymer inks. There are some limitations to these types of solar cells, however. First, toxic halogenated solvents have historically been necessary to dissolve polymers to make the ink. In addition, organic solar cells typically have high rates of recombination, which limits their efficiency. Here, we use a transient photovoltage (TPV) technique to measure charge lifetimes in cells made from two different organic solvents. The first solvent is toxic, halogenated dichlorobenzene (DCB) which is typically used to make organic solar cells. The other is a less toxic, non-halogenated solvent, carbon disulfide (CS<sub>2</sub>). By varying the processing methods in this way, we find that cells made from CS<sub>2</sub> have longer charge lifetimes and higher efficiencies than those made with DCB. Possible reasons for these differences are explored using semi-analytic and numerical modeling. This work demonstrates that we may be able to decrease the toxicity of organic solar cell manufacturing and simultaneously improve the efficiency of the devices, bringing this powerful method of capturing solar energy to the forefront of sustainable energy solutions.