April 22 - 26, 2024
Seattle, Washington
May 7 - 9, 2024 (Virtual)
Symposium Supporters
2024 MRS Spring Meeting
MT03.07.05

New Opportunities for Data-Driven Chemistry and Materials Science Through Automation

When and Where

Apr 25, 2024
3:15pm - 3:45pm
Room 322, Level 3, Summit

Presenter(s)

Co-Author(s)

Janine George1,2

Federal Institute for Materials Research and Testing (BAM)1,Friedrich-Schiller-Universität Jena2

Abstract

Janine George1,2

Federal Institute for Materials Research and Testing (BAM)1,Friedrich-Schiller-Universität Jena2
In recent years, many protocols in computational materials science have been automated and made available within software packages (primarily Python-based).<sup>[1]</sup> This ranges from the automation of simple heuristics (oxidation states, coordination environments)<sup>[2]</sup> to the automation of protocols, including multiple DFT and post-processing tools such as (an)harmonic phonon computations or bonding analysis<sup>[3]</sup>. Such developments also shorten the time frames of projects after such developments have been made available and open new possibilities.<br/><br/>For example, we can now easily make data-driven tests of well-known rules and heuristics or develop quantum chemistry-based materials descriptors for machine learning approaches. These tests and descriptors can have applications related to magnetic ground state predictions of materials relevant for spintronic applications<sup>[4]</sup> or for predicting thermal properties relevant for thermal management in electronics.<sup>[5]</sup> Combining high-throughput <i>ab initio</i> computations with fitting, fine-tuning machine learning models and predictions of such models within complex workflows is also possible and promises further acceleration in the field.<sup>[6] </sup><br/><br/>In this talk, I will show our latest efforts to link automation with data-driven chemistry and materials science.<br/><br/><b>References</b><br/>[1] J. George, <i>Trends Chem.</i> <b>2021</b>, <i>3</i>, 697–699.<br/>[2] D. Waroquiers, J. George, M. Horton, S. Schenk, K. A. Persson, G.-M. Rignanese, X. Gonze, G. Hautier, <i>Acta Cryst B</i> <b>2020</b>, <i>76</i>, 683–695.<br/>[3] J. George, G. Petretto, A. Naik, M. Esters, A. J. Jackson, R. Nelson, R. Dronskowski, G.-M. Rignanese, G. Hautier, <i>ChemPlusChem</i> <b>2022</b>, <i>87</i>, e202200123.<br/>[4] K. Ueltzen, A. Naik, C. Ertural, P. Benner, J. George, <i>Article in Preparation</i> <b>2023</b>.<br/>[5] A. A. Naik, C. Ertural, N. Dhamrait, P. Benner, J. George, <i>Sci Data</i> <b>2023</b>, <i>10</i>, 610.<br/>[6] C. Ertural, V. L. Deringer, J. George, <i>Article in Preparation</i> <b>2023</b>.

Keywords

thermal conductivity

Symposium Organizers

Keith Butler, University College London
Kedar Hippalgaonkar, Nanyang Technological University
Shijing Sun, University of Washington
Jie Xu, Argonne National Laboratory

Symposium Support

Bronze
APL Machine Learning
SCIPRIOS GmbH

Session Chairs

Janine George
Shijing Sun

In this Session