April 22 - 26, 2024
Seattle, Washington
May 7 - 9, 2024 (Virtual)
Symposium Supporters
2024 MRS Spring Meeting & Exhibit
EL06.08.02

Solid-State Electrochemical Thermal Transistor based on Oxygen Sponge SrCoOx (2 ≦ x ≦ 3)

When and Where

Apr 25, 2024
2:00pm - 2:30pm
Room 343, Level 3, Summit

Presenter(s)

Co-Author(s)

Hiromichi Ohta1

Hokkaido University1

Abstract

Hiromichi Ohta1

Hokkaido University1
Thermal transistors are devices that can electrically switch “heat flow” on and off, like a semiconductor transistor that switches “electric current” on and off. We can reuse waste heat exhausted to the environment using devices composed of thermal transistors such as thermal shutters and thermal displays<sup> [1]</sup>. Although several thermal transistors have been demonstrated thus far, the use of liquid electrolytes (or ionic liquids or ion gels) may limit the application from the viewpoint of reliability or liquid leakage<sup> [2−4]</sup>. Very recently, we demonstrated a solid-state thermal transistor that can electrochemically control the heat flow with an on-to-off ratio of the thermal conductivity (<i>κ</i>) of ~4 without using any liquid<sup> [5]</sup>. The thermal transistor is composed of a multilayer film composed of an upper electrode (Pt), strontium cobaltite (SrCoO<i><sub>x</sub></i>), solid electrolyte (YSZ), and bottom electrode (Pt). An electrochemical redox treatment at 280 °C in air repeatedly modulates the crystal structure and <i>κ</i> of the SrCoO<sub><i>x</i></sub> layer. The fully oxidized perovskite-structured SrCoO<sub>3</sub> layer shows a high <i>κ</i> ~3.8 W m<sup>−1</sup> K<sup>−1</sup>, whereas the fully reduced defect perovskite-structured SrCoO<sub>2</sub> layer shows a low <i>κ</i> ~0.95 W m<sup>−1</sup> K<sup>−1</sup>. We believe that all-solid-state electrochemical thermal transistors have the potential to become next-generation devices for future thermal management technology, and we are currently working on improving their characteristics<sup> [6, 7]</sup>.<br/><br/><b>References</b><br/>[1] T. Swoboda <i>et al.</i>, <i>Adv. Electron. Mater.</i> <b>7</b>, 2000625 (2021).<br/>[2] J. Cho <i>et al</i>., <i>Nat. Commun.</i> <b>5</b>, 4035 (2014).<br/>[3] A. Sood <i>et al</i>., <i>Nat. Commun.</i> <b>9</b>, 4510 (2018).<br/>[4] Q. Y. Lu <i>et al</i>., <i>Nat. Mater.</i> <b>19</b>, 655 (2020).<br/>[5] Q. Yang, <u>H. Ohta</u> <i>et al</i>., <i>Adv. Funct. Mater.</i> <b>33</b>, 2214939 (2023).<br/>[6] Z. Bian, <u>H. Ohta</u> <i>et al</i>., <i>ACS Appl. Mater. Interfaces</i> <b>15</b>, 23512 (2023).<br/>[7] M. Yoshimura, <u>H. Ohta</u> <i>et al</i>., <i>ACS Appl. Electron. Mater.</i> <b>5</b>, 4233 (2023).

Keywords

electrical properties | thermal conductivity

Symposium Organizers

Aiping Chen, Los Alamos National Laboratory
Woo Seok Choi, Sungkyunkwan University
Marta Gibert, Technische Universität Wien
Megan Holtz, Colorado School of Mines

Symposium Support

Silver
Korea Vacuum Tech, Ltd.

Bronze
Center for Integrated Nanotechnologies, Los Alamos National Laboratory
Radiant Technologies, Inc.

Session Chairs

Aiping Chen
Gertjan Koster

In this Session