Apr 24, 2024
5:00pm - 7:00pm
Flex Hall C, Level 2, Summit
Brendan Healy1,Sophie Pain1,Nicholas Grant1,John Murphy1
University of Warwick1
Transition metal dichalcogenides (TMDCs) are an exciting class of two-dimensional (2D) materials that exhibit exceptional physical and chemical behaviour at the monolayer limit. <sup>1</sup> Molybdenum disulfide (MoS<sub>2</sub>) is a prototypical TMDC that has emerged as a leading candidate for inclusion in numerous optoelectronic technologies, owing to its novel optical properties. <sup>2</sup> With a direct bandgap in the visible spectral range, monolayer MoS<sub>2</sub> emits a relatively strong photoluminescence (PL) signal. <sup>3</sup> The ability to control the PL character of MoS<sub>2</sub> is important for full realisation of its optoelectronic application. The PL spectrum of MoS<sub>2</sub> has been shown to be sensitive to a range of external treatments, including oxygen plasma exposure, <sup>4</sup> annealing, <sup>5</sup> laser irradiation, <sup>6</sup> superacid treatment, <sup>7</sup> and dielectric encapsulation. <sup>8</sup> Each treatment will induce a change in response, potentially enabling tuneable modification of the PL behaviour of MoS<sub>2</sub> via the choice of treatment.<br/><br/>In this work, we present controllable variation of the PL signal from chemical vapour deposition (CVD)-grown MoS<sub>2</sub> monolayer films. We demonstrate selective alteration of the MoS<sub>2</sub> PL intensity, bidirectional energy shift and spectral reshaping via superacid treatment or atomic layer deposition (ALD) of a high dielectric constant (high-<i>κ</i>) material. By submerging monolayer MoS<sub>2</sub> in a solution containing the superacidic bis-(trifluoromethanesulfonyl)amide (TFSA), we achieve improvement of the PL character, in agreement with previous reports.<sup> 7, 9</sup> We find that superacid treatment induces significant enhancement of the absolute MoS<sub>2</sub> PL intensity, as well as blueshift in the energy of the emission and narrowing of the dominant peak. Conversely, we reveal opposing changes to the MoS<sub>2</sub> PL signal result from deposition of a high-<i>κ</i> dielectric. Grown by ALD, an atop layer of hafnium oxide (HfO<sub>2</sub>) or aluminium oxide (Al<sub>2</sub>O<sub>3</sub>) layer is shown to attenuate the strength of the PL emission from monolayer MoS<sub>2</sub>, with an accompanying redshift and broadening of the PL spectrum also observed. Via PL mapping, we confirm the treatment-induced modifications of the PL intensity to be prevalent across the MoS<sub>2</sub> surface following both TFSA and ALD-dielectric treatments. We utilise Lorentzian deconvolution of the PL spectra, coupled with a correlative analysis of the characteristic Raman peaks, to attribute the varying PL changes to differing charge doping and strain effects.<sup>10</sup> This work demonstrates facile control of the PL behaviour of CVD-MoS<sub>2</sub> monolayer films via application of an external chemical or dielectric treatment.<br/><br/>References<br/>1.X. Duan; C. Wang; A. Pan; R. Yu; X. Duan, Chemical Society Reviews <b>44</b>, 8859 (2015).<br/>2.B. Radisavljevic; A. Radenovic; J. Brivio; V. Giacometti; A. Kis, Nature Nanotechnology <b>6</b>, 147 (2011).<br/>3.A. Splendiani; L. Sun; Y. Zhang; T. Li; J. Kim; C.-Y. Chim; G. Galli; F. Wang, Nano Letters <b>10</b>, 1271 (2010).<br/>4.N. Kang; H.P. Paudel; M.N. Leuenberger; L. Tetard; S.I. Khondaker, The Journal of Physical Chemistry C <b>118</b>, 21258 (2014).<br/>5.H. Nan; Z. Wang; W. Wang; Z. Liang; Y. Lu; Q. Chen; D. He; P. Tan; F. Miao; X. Wang; J. Wang; Z. Ni, ACS Nano <b>8</b>, 5738 (2014).<br/>6.H.-J. Kim; Y.J. Yun; S.N. Yi; S.K. Chang; D.H. Ha, ACS Omega <b>5</b>, 7903 (2020).<br/>7.S.L. Pain; N.E. Grant; J.D. Murphy, ACS Nano <b>16</b>, 1260 (2022).<br/>8.S.Y. Kim; H.I. Yang; W. Choi, Applied Physics Letters <b>113</b>, 133104 (2018).<br/>9.M. Amani; D.-H. Lien; D. Kiriya; J. Xiao; A. Azcatl; J. Noh; S.R. Madhvapathy; R. Addou; S. Kc; M. Dubey; K. Cho; R.M. Wallace; S.-C. Lee; J.-H. He; J.W. Ager; X. Zhang; E. Yablonovitch; A. Javey, Science <b>350</b>, 1065 (2015).<br/>10.H. Kim; T. Lee; H. Ko; S. Kim; H. Rho, Applied Physics Letters <b>117</b>, 202104 (2020).