Dec 4, 2024
3:30pm - 4:00pm
Sheraton, Second Floor, Independence West
Fabio Biscarini1,2,Rian Zanotti2,3,Matteo Sensi2,Marcello Berto2,Alessandro Paradisi2,Michele Bianchi2,Pierpaolo Greco1,4,Carlo Augusto Bortolotti2,Michele Di Lauro1
Istituto Italiano di Tecnologia1,Università degli Studi di Modena e Reggio Emilia2,Università di Modena e Reggio Emilia3,Università di Ferrara4
Fabio Biscarini1,2,Rian Zanotti2,3,Matteo Sensi2,Marcello Berto2,Alessandro Paradisi2,Michele Bianchi2,Pierpaolo Greco1,4,Carlo Augusto Bortolotti2,Michele Di Lauro1
Istituto Italiano di Tecnologia1,Università degli Studi di Modena e Reggio Emilia2,Università di Modena e Reggio Emilia3,Università di Ferrara4
A framework for electrolyte gated organic transistors (EGOTs) which unifies the view of interfacial capacitive coupling of electrolyte-gated organic field-effect transistors (EGOFETs) with the volumetric capacitive coupling in organic electrochemical transistors (OECTs) is proposed. The EGOT effective capacitance arises from in series capacitances of the electrolyte/gate electrode and electrolyte/channel interfaces, and the chemical capacitance of the organic semiconductor channel whose weight with respect to the interfacial capacitance is modulated by the charge carrier density, hence by the gate voltage. The expression for chemical capacitance is derived from the DOS of the organic semiconductor, that we assume exhibits exponential energy disorder in the HOMO-LUMO gap. The analytical expression of the EGOT current is assessed on experimental data and shown to accurately predict the shape of the whole transfer curve of an EGOT thus allowing us to extract accurate values for the switch-on voltage and the interfacial transconductance, without assumptions on specific response regime and, in OECT, without invoking the volumetric capacitance. Interestingly, our EGOT model recovers EGOFET and OECT as limit cases and, in the latter case, explicitly represents the volumetric capacitance in terms of the energy disorder and the band gap of the organic semiconductor. Finally, I will discuss how spiked voltages are input into the framework to describe the neuromorphic response of EGOTs.