December 1 - 6, 2024
Boston, Massachusetts
Symposium Supporters
2024 MRS Fall Meeting & Exhibit
SB05.03.26

Backbone Cationized Highly Branched Poly(β-Amino Ester) as Gene Delivery Vectors in Lung Cystic Fibrosis Gene Therapy

When and Where

Dec 3, 2024
8:00pm - 10:00pm
Hynes, Level 1, Hall A

Presenter(s)

Co-Author(s)

Yinghao Li1,Bei Qiu1,Jing Lyu1,Wenxin Wang1

University College Dublin1

Abstract

Yinghao Li1,Bei Qiu1,Jing Lyu1,Wenxin Wang1

University College Dublin1
Gene therapy holds great potential for treating Lung Cystic Fibrosis (CF) which is a fatal hereditary condition arising from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in dysfunctional CFTR protein. However, the advancement and clinical application of CF gene therapy systems have been hindered due to the absence of a highly efficient delivery vector. In this work, we introduce a new generation of highly branched poly(<i>β</i>-amino ester) (HPAE) gene delivery vectors for CF treatment. Building upon the classical chemical composition of HPAE, a novel backbone cationization strategy was developed to incorporate additional functional amine groups into HPAE without altering their branching degree. By carefully adjusting the type, proportion, and backbone distribution of the added cationic groups, a series of highly effective HPAE gene delivery vectors were successfully constructed for CF disease gene therapy. <i>In vitro</i> assessment results showed that the backbone cationized HPAEs with randomly distributed 10% proportion of E7 amine groups exhibited superior transfection performance than their counterparts. Furthermore, the top-performed backbone cationized HPAEs, when loaded with therapeutic plasmids, successfully reinstated CFTR protein expression in the CFBE41o- disease model, achieving levels 20-23 times higher than that of normal human bronchial epithelial (HBE) cells. Their therapeutic effectiveness significantly surpassed that of the currently advanced commercial vectors, Xfect and Lipofectamine 3000.

Symposium Organizers

Gulden Camci-Unal, University of Massachusetts Lowell
Michelle Oyen, Washington University in St. Louis
Natesh Parashurama, University at Buffalo, The State University of New York
Janet Zoldan, The University of Texas at Austin

Session Chairs

Gulden Camci-Unal
Michelle Oyen
Natesh Parashurama
Janet Zoldan

In this Session