Dec 5, 2024
8:00pm - 10:00pm
Hynes, Level 1, Hall A
Raissa Ribeiro Lima Machado1,2,Bright Nsolebna Jaato1,2,Ignacio Sanjuán1,2,Corina Andronescu1,2
Universität Duisburg-Essen1,Center for Nanointegration Duisburg-Essen - CENIDE2
Raissa Ribeiro Lima Machado1,2,Bright Nsolebna Jaato1,2,Ignacio Sanjuán1,2,Corina Andronescu1,2
Universität Duisburg-Essen1,Center for Nanointegration Duisburg-Essen - CENIDE2
Anthropogenic CO<sub>2</sub> emissions are the primary drivers of global warming and climate change.<sup>1</sup> The electrochemical reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) offers a green alternative for mitigating CO<sub>2</sub> emissions while producing valuable fuels, chemicals, and feedstocks for the chemical industry.<sup>2,3</sup> The simultaneous electroreduction of CO<sub>2</sub> and H<sub>2</sub>O to form syngas (H<sub>2</sub>/CO) is particularly promising, with tunable syngas ratios (H<sub>2</sub>/CO) between 0.3 and 3 meeting the requirements of various downstream processes.<sup>2,4</sup> Using a NiO<sub>x</sub>/Ni-N-C catalyst, syngas formation can be achieved at industrially relevant current densities (> 200 mA cm<sup>-2</sup>).<sup>1,2</sup> Accurate quantification of CO<sub>2</sub>RR products at high current densities is essential for evaluating reaction selectivity and efficiency. In this study, we emphasize the importance of optimizing gas product quantification via online gas chromatography to ensure accurate Faradaic efficiencies (FEs) for H<sub>2</sub>/CO syngas. We explored the effects of gas quantification on FE using a gas diffusion electrode comprising NiO<sub>x</sub>/Ni-N-C on H23C8 carbon paper (Freudenberg, from Quintech) in a flow cell electrolyzer (1 M KOH). Our initial results at a current density of -300 mA cm<sup>-2</sup> showed a suboptimal syngas ratio of 0.24 and a total FE of 64.5% (<i>j<sub>CO</sub></i> = -156 mA cm<sup>-2</sup>), with a noticeable gap attributed to product quantification challenges at this current density. To address this, we optimized experimental conditions, including calibration for linearity in H<sub>2</sub>/CO formation and product dilution with N<sub>2</sub>. These adjustments successfully brought H<sub>2</sub>/CO products into the linear range of the gas chromatograph calibration, with total FEs approaching 100% up to a remarkable current density of -900 mA cm<sup>-2</sup>. At -300 mA cm<sup>-2</sup>, the total FE reached 94.9%, with a superior <i>j<sub>CO</sub></i> of -251 mA cm<sup>-2</sup>. The highest H<sub>2</sub>/CO ratio of 1.77—suitable for hydrocarbon synthesis via Fischer-Tropsch or alcohol synthesis—was achieved at -500 mA cm<sup>-2</sup>. These compelling results underscore the importance of reporting reliable and accurate CO<sub>2</sub>RR data, enabling more consistent comparisons with previous and future studies.<br/><br/><br/><b>References</b><br/>(1) Segets, D.; Andronescu, C.; Apfel, U.-P. Accelerating CO<sub>2</sub> electrochemical conversion towards industrial implementation. <i>Nat. Commun.</i> <b>2023</b>, <i>14 </i>(1), 7950. DOI: 10.1038/s41467-023-43762-6.<br/>(2) Sanjuán, I.; Kumbhar, V.; Chanda, V.; Machado, R. R. L.; Jaato, B. N.; Braun, M.; Mahbub, M. A. A.; Bendt, G.; Hagemann, U.; Heidelmann, M.; Schuhmann, W.; Andronescu, C. Tunable Syngas Formation at Industrially Relevant Current Densities via CO<sub>2</sub> Electroreduction and Hydrogen Evolution over Ni and Fe-derived Catalysts obtained via One-Step Pyrolysis of Polybenzoxazine Based Composites. <i>Small</i> <b>2024</b>, <i>20 </i>(23), e2305958. DOI: 10.1002/smll.202305958.<br/>(3) Liu, K.; Smith, W. A.; Burdyny, T. Introductory Guide to Assembling and Operating Gas Diffusion Electrodes for Electrochemical CO<sub>2</sub> Reduction. <i>ACS Energy Lett.</i> <b>2019</b>, <i>4 </i>(3), 639–643. DOI: 10.1021/acsenergylett.9b00137.<br/>(4) Cui, S.; Yu, C.; Tan, X.; Huang, H.; Yao, X.; Qiu, J. Achieving Multiple and Tunable Ratios of Syngas to Meet Various Downstream Industrial Processes. <i>ACS Sustainable Chem. Eng.</i> <b>2020</b>, <i>8 </i>(8), 3328–3335. DOI: 10.1021/acssuschemeng.9b07255.