December 1 - 6, 2024
Boston, Massachusetts
Symposium Supporters
2024 MRS Fall Meeting & Exhibit
EN05.11.18

Strategies to Promote Accurate Gaseous Product Quantification for CO2RR at Industrial-Relevant Current Densities

When and Where

Dec 5, 2024
8:00pm - 10:00pm
Hynes, Level 1, Hall A

Presenter(s)

Co-Author(s)

Raissa Ribeiro Lima Machado1,2,Bright Nsolebna Jaato1,2,Ignacio Sanjuán1,2,Corina Andronescu1,2

Universität Duisburg-Essen1,Center for Nanointegration Duisburg-Essen - CENIDE2

Abstract

Raissa Ribeiro Lima Machado1,2,Bright Nsolebna Jaato1,2,Ignacio Sanjuán1,2,Corina Andronescu1,2

Universität Duisburg-Essen1,Center for Nanointegration Duisburg-Essen - CENIDE2
Anthropogenic CO2 emissions are the primary drivers of global warming and climate change.1 The electrochemical reduction of CO2 (CO2RR) offers a green alternative for mitigating CO2 emissions while producing valuable fuels, chemicals, and feedstocks for the chemical industry.2,3 The simultaneous electroreduction of CO2 and H2O to form syngas (H2/CO) is particularly promising, with tunable syngas ratios (H2/CO) between 0.3 and 3 meeting the requirements of various downstream processes.2,4 Using a NiOx/Ni-N-C catalyst, syngas formation can be achieved at industrially relevant current densities (> 200 mA cm-2).1,2 Accurate quantification of CO2RR products at high current densities is essential for evaluating reaction selectivity and efficiency. In this study, we emphasize the importance of optimizing gas product quantification via online gas chromatography to ensure accurate Faradaic efficiencies (FEs) for H2/CO syngas. We explored the effects of gas quantification on FE using a gas diffusion electrode comprising NiOx/Ni-N-C on H23C8 carbon paper (Freudenberg, from Quintech) in a flow cell electrolyzer (1 M KOH). Our initial results at a current density of -300 mA cm-2 showed a suboptimal syngas ratio of 0.24 and a total FE of 64.5% (jCO = -156 mA cm-2), with a noticeable gap attributed to product quantification challenges at this current density. To address this, we optimized experimental conditions, including calibration for linearity in H2/CO formation and product dilution with N2. These adjustments successfully brought H2/CO products into the linear range of the gas chromatograph calibration, with total FEs approaching 100% up to a remarkable current density of -900 mA cm-2. At -300 mA cm-2, the total FE reached 94.9%, with a superior jCO of -251 mA cm-2. The highest H2/CO ratio of 1.77—suitable for hydrocarbon synthesis via Fischer-Tropsch or alcohol synthesis—was achieved at -500 mA cm-2. These compelling results underscore the importance of reporting reliable and accurate CO2RR data, enabling more consistent comparisons with previous and future studies.


References
(1) Segets, D.; Andronescu, C.; Apfel, U.-P. Accelerating CO2 electrochemical conversion towards industrial implementation. Nat. Commun. 2023, 14 (1), 7950. DOI: 10.1038/s41467-023-43762-6.
(2) Sanjuán, I.; Kumbhar, V.; Chanda, V.; Machado, R. R. L.; Jaato, B. N.; Braun, M.; Mahbub, M. A. A.; Bendt, G.; Hagemann, U.; Heidelmann, M.; Schuhmann, W.; Andronescu, C. Tunable Syngas Formation at Industrially Relevant Current Densities via CO2 Electroreduction and Hydrogen Evolution over Ni and Fe-derived Catalysts obtained via One-Step Pyrolysis of Polybenzoxazine Based Composites. Small 2024, 20 (23), e2305958. DOI: 10.1002/smll.202305958.
(3) Liu, K.; Smith, W. A.; Burdyny, T. Introductory Guide to Assembling and Operating Gas Diffusion Electrodes for Electrochemical CO2 Reduction. ACS Energy Lett. 2019, 4 (3), 639–643. DOI: 10.1021/acsenergylett.9b00137.
(4) Cui, S.; Yu, C.; Tan, X.; Huang, H.; Yao, X.; Qiu, J. Achieving Multiple and Tunable Ratios of Syngas to Meet Various Downstream Industrial Processes. ACS Sustainable Chem. Eng. 2020, 8 (8), 3328–3335. DOI: 10.1021/acssuschemeng.9b07255.

Keywords

chemical reaction | gas chromatography

Symposium Organizers

Alexander Giovannitti, Chalmers University of Technology
Joakim Halldin Stenlid, KBR Inc., NASA Ames Research Center
Helena Lundberg, KTH Royal Institute of Technology
Germán Salazar Alvarez, Uppsala University

Session Chairs

Alexander Giovannitti
Joakim Halldin Stenlid
Helena Lundberg

In this Session