Dec 4, 2024
8:00am - 8:30am
Hynes, Level 2, Room 208
Wen Chen1
University of Massachusetts Amherst1
The increasing demands for materials serving under extreme environments call for the development of emerging metal alloys with increasingly complex compositions. However, synthesis and processing of complex alloys via traditional routes are challenging. Additive manufacturing, also called 3D printing, is a disruptive technology for creating materials and components in a single print. Harnessing the vast compositional space of complex alloys and the far-from-equilibrium processing conditions (e.g., large thermal gradients and high cooling rates) of additive manufacturing provides a paradigm-shifting pathway for material design. In this talk, I will present the potential of utilizing laser additive manufacturing and direct ink writing to produce metal alloys with engineered structural hierarchy across multiple length scales. These unique microstructures give rise to exceptional mechanical and functional properties that extend far beyond those accessible by conventional manufacturing. In addition, I will discuss the abundant opportunities enabled by additive manufacturing for high-throughput materials discovery to accelerate the pace of future materials search.