December 1 - 6, 2024
Boston, Massachusetts
Symposium Supporters
2024 MRS Fall Meeting & Exhibit
CH05.08.04

Exploring the Dynamics of Semiconductors with an Ultrafast Transmission Electron Microscope

When and Where

Dec 4, 2024
9:30am - 10:00am
Sheraton, Third Floor, Fairfax B

Presenter(s)

Co-Author(s)

Sophie Meuret1,Cleo Santini1,Nika van Nielen2,Florian Castioni3,Robin Cours1,Sebastien Weber1,Teresa Hungria4,A. Sakharov5,A. Tsatsulnikov5,A. Nikolaev5,A. Polman2,Andrea Balocchi6,Nikolay Cherkashin1,Luiz Galvao Tizei3

Centre d’Élaboration des Matériaux et d’Etudes Structurales1,AMOLF2,Université Paris-Saclay3,Centre Castaing4,Ioffe Institute5,LPCNO6

Abstract

Sophie Meuret1,Cleo Santini1,Nika van Nielen2,Florian Castioni3,Robin Cours1,Sebastien Weber1,Teresa Hungria4,A. Sakharov5,A. Tsatsulnikov5,A. Nikolaev5,A. Polman2,Andrea Balocchi6,Nikolay Cherkashin1,Luiz Galvao Tizei3

Centre d’Élaboration des Matériaux et d’Etudes Structurales1,AMOLF2,Université Paris-Saclay3,Centre Castaing4,Ioffe Institute5,LPCNO6
The development of time-resolved Cathodoluminescence (TR-CL) in a scanning electron microscope has enabled the measurement of the lifetime of excited states in semiconductors with a sub-wavelength spatial resolution [1]–[3]. For example, it was used to measure the influence of stacking faults on the GaN exciton [1], to probe the role of a silver layer on the dynamics of a YAG crystal[2] or to show the influence of stress on the optical properties of ZnO nanowires [3]. These results demonstrate that TR-CL is essential to study the correlation between semiconductor optical and structural properties (composition, defects, strain…). While TRCL is usually done in a scanning electron microscope, the improvement of the spatial resolution and the combination with other electron-based spectroscopies offered by transmission electron microscopes has been a step forward for TR-CL [4], [5]. Our TRCL experiment are performed in a unique electron microscope, based on a cold-FEG electron gun [6]. This technology allows among other things to reach a spatial resolution of a few nanometers, essential for the study of III-N heterostructures. In this presentation we will discuss for example the advantage and inconvenient of TRCL in a UTEM and present our results on the study of charge carrier dynamics in In<sub>0.3</sub>Ga<sub>0.7</sub>N/GaN quantum well with a resolution below 10 nm. Comparing different heterostructure we will discuss the impact of growth conditions on the optical properties (spectral and carriers dynamics). We will study the QW emission dynamic both along and across the quantum well and correlate the results with the strain maps obtained from the high resolution HAADF-STEM images[7] and temperature dependent time-resolved photoluminescence experiments<br/><br/><br/><b>References</b><br/><br/>[1] P. Corfdir <i>et al.</i>, “Exciton localization on basal stacking faults in a-plane epitaxial lateral overgrown GaN grown by hydride vapor phase epitaxy,” <i>J. Appl. Phys.</i>, vol. 105, no. 4, p. 043102, 2009.<br/>[2] R. J. Moerland, I. G. C. Weppelman, M. W. H. Garming, P. Kruit, and J. P. Hoogenboom, “Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states,” <i>Opt. Express</i>, vol. 24, no. 21, p. 24760, 2016.<br/>[3] X. Fu <i>et al.</i>, “Exciton Drift in Semiconductors under Uniform Strain Gradients: Application to Bent ZnO Microwires,” <i>ACS Nano</i>, vol. 8, no. 4, pp. 3412–3420, 2014.<br/>[4] S. Meuret <i>et al.</i>, “Time-resolved cathodoluminescence in an ultrafast transmission electron microscope,” <i>Appl. Phys. Lett.</i>, vol. 119, no. 6, p. 6, 2021.<br/>[5] Y. J. Kim and O. H. Kwon, “Cathodoluminescence in Ultrafast Electron Microscopy,” <i>ACS Nano</i>, vol. 15, no. 12, pp. 19480–19489, 2021.<br/>[6] F. Houdellier, G. M. Caruso, S. Weber, M. Kociak, and A. Arbouet, “Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source,” <i>Ultramicroscopy</i>, vol. 186, pp. 128–138, 2018.<br/>[7] N. Cherkashin, A. Louiset, A. Chmielewski, D. J. Kim, C. Dubourdieu, and S. Schamm-Chardon, “Quantitative mapping of strain and displacement fields over HR-TEM and HR-STEM images of crystals with reference to a virtual lattice,” <i>Ultramicroscopy</i>, vol. 253, p. 113778, 2023.

Keywords

electron energy loss spectroscopy (EELS) | scanning transmission electron microscopy (STEM) | transmission electron microscopy (TEM)

Symposium Organizers

Miaofang Chi, Oak Ridge National Laboratory
Ryo Ishikawa, The University of Tokyo
Robert Klie, University of Illinois at Chicago
Quentin Ramasse, SuperSTEM Laboratory

Symposium Support

Bronze
EKSPLA 
Protochips
Thermo Fisher Scientific, Inc.

Session Chairs

Miaofang Chi
Quentin Ramasse

In this Session