Dec 4, 2024
4:00pm - 4:15pm
Sheraton, Second Floor, Republic A
Siwei Chen1,Zitao Tang1,Mengqi Fang1,Rui Sun2,Licheng Xiao1,Xiaotong Zhang2,Seyed Sepehr Mohajerani1,Yuze Zhang1,Dali Sun2,Stefan Strauf1,Eui-Hyeok Yang1
Stevens Institute of Technology1,North Carolina State University2
Two-dimensional (2D) van der Waals (vdW) magnets with perpendicular magnetic anisotropy (PMA) hold great potential for next-generation high-density, energy-efficient spintronics
1–9. Recent breakthroughs have emerged with the discovery of Fe
3GaTe
2 ,PtTe
2 and CrTe
2, boasting Tc exceeding 300K, opening possibilities for constructing functional 2D magnetic devices operating at room temperature
10–14. However, achieving high-efficiency spin-orbit torque (SOT) switching of monolayer vdW magnets at room temperature poses a significant challenge, particularly in the absence of an external magnetic field. Here we demonstrate an ultra-low power, field-free, deterministic, and nonvolatile PMA switching of SOT system up to 370 K using a dilute magnetic semiconductor (DMS), monolayer Fe:MoS
215, through interfacial spin-orbit coupling with a Pt Hall bar. A clear anomalous Hall effect (AHE) loop shift is observed at a zero in-plane magnetic field, verifying the existence of z spins in the Fe:MoS
2/Pt heterostructure, which induces a damping-like torque that facilitates field-free SOT switching with the current density of 10
5 A cm
−2 at 370K. The Fe doping into MoS
2 disintegrates the rotational crystal symmetry, evidenced by the crystal axis dependency of the switching in Fe:MoS
2/Pt heterostructures with PMA. A strong topological Hall effect (THE) was also observed, attributed to interfacial Dzyaloshinskii-Moriya interaction (DMI). This field-free SOT application using a 2D monolayer dilute magnetic semiconductor provides a new pathway for developing highly power-efficient spintronic devices.
References:
1. Ou, Y.
et al. ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics.
Nat. Commun. 13, 2972 (2022).
2. Gong, C.
et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals.
Nature 546, 265–269 (2017).
3. Verzhbitskiy, I. A.
et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating.
Nat. Electron. 3, 460–465 (2020).
4. Lohmann, M.
et al. Probing Magnetism in Insulating Cr
2 Ge
2 Te
6 by Induced Anomalous Hall Effect in Pt.
Nano Lett. 19, 2397–2403 (2019).
5. Huang, B.
et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.
Nature 546, 270 (2017).
6. Klein, D. R.
et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling.
Science 360, 1218–1222 (2018).
7. Song, T.
et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures.
Science 360, 1214–1218 (2018).
8. Chen, W.
et al. Direct observation of van der Waals stacking–dependent interlayer magnetism.
Science 366, 983–987 (2019).
9. Thiel, L.
et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy.
Science 364, 973–976 (2019).
10. Kajale, S. N., Nguyen, T., Hung, N. T., Li, M. & Sarkar, D. Field-free deterministic switching of all–van der Waals spin-orbit torque system above room temperature.
Sci. Adv. 10, eadk8669 (2024).
11. Wang, F.
et al. Field-free switching of perpendicular magnetization by two-dimensional PtTe2/WTe2 van der Waals heterostructures with high spin Hall conductivity.
Nat. Mater. (2024) doi:10.1038/s41563-023-01774-z.
12. Liu, X.
et al. Wafer-Scale Epitaxial Growth of the Thickness-Controllable Van Der Waals Ferromagnet CrTe2 for Reliable Magnetic Memory Applications.
Adv. Funct. Mater. 33, 2304454 (2023).
13. Li, W.
et al. Room-Temperature van der Waals Ferromagnet Switching by Spin-Orbit Torques.
Adv. Mater. 35, 2303688 (2023).
14. Zhang, X.
et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films.
Nat. Commun. 12, 2492 (2021).
15. Fu, S.
et al. Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping.
Nat. Commun. 11, 2034–2034 (2020).