Dec 4, 2024
8:00pm - 10:00pm
Hynes, Level 1, Hall A
Ingrid Barcelos1,Rafael Mayer1,Lukas Wehmeier2,Matheus Torquato3,Flavio Feres1,Francisco Maia1,Maximilan Obst4,Felix Kaps4,Andrei Luferau5,J. Michael Klopf5,Stephanie Gilbert Corder6,Hans Bechtel6,Juan González7,Emilson Viana8,Lukas Eng4,Susanne Kehr4,Raul Freitas1
CNPEM-Brazilian Center for Research in Energy and Materials1,Brookhaven National Laboratory2,Instituto Militar de Engenharia3,Technische Universität Dresden4,Helmholtz-Zentrum Dresden-Rossendorf5,Lawrence Berkeley National Laboratory6,Universidade Federal de Minas Gerais7,Universidade Tecnológica Federal do Pa8
Ingrid Barcelos1,Rafael Mayer1,Lukas Wehmeier2,Matheus Torquato3,Flavio Feres1,Francisco Maia1,Maximilan Obst4,Felix Kaps4,Andrei Luferau5,J. Michael Klopf5,Stephanie Gilbert Corder6,Hans Bechtel6,Juan González7,Emilson Viana8,Lukas Eng4,Susanne Kehr4,Raul Freitas1
CNPEM-Brazilian Center for Research in Energy and Materials1,Brookhaven National Laboratory2,Instituto Militar de Engenharia3,Technische Universität Dresden4,Helmholtz-Zentrum Dresden-Rossendorf5,Lawrence Berkeley National Laboratory6,Universidade Federal de Minas Gerais7,Universidade Tecnológica Federal do Pa8
Polaritons, i.e. hybrid quasi-particles of light and matter resonances, have been extensively investigated due to their potential to enhance light matter interactions. Although polaritonic applications thrive in the mid-infrared range, their extension to the terahertz (THz) range remains limited. Here, we present paratellurite (α-TeO2) nanowires, a versatile material acting as a platform for different types of phonon polaritons. Utilizing synchrotron infrared nanospectroscopy from 10 to 24 THz, we uncover the polaritonic properties of α-TeO2 nanowires, showcasing their dual functionality as both a Fabry-Perot cavity and a waveguide for surface phonon polaritons. Furthermore, near-field measurements with a free-electron laser as a THz source reveal a localized optical contrast down to 5.5 THz, an indication of hyperbolic bands. Our findings complement the repertoire of polaritonic materials, with significant implications for advancing THz technologies.