Dec 4, 2024
2:15pm - 2:30pm
Hynes, Level 3, Ballroom B
Evan Carlson1,2,Md Delowar Hossain2,Karina Masalkovaite1,Hendrik Ohldag3,William C. Chueh1,Michal Bajdich2,Tyler Mefford1
Stanford University1,SLAC National Accelerator Laboratory2,Lawrence Berkeley National Laboratory3
Evan Carlson1,2,Md Delowar Hossain2,Karina Masalkovaite1,Hendrik Ohldag3,William C. Chueh1,Michal Bajdich2,Tyler Mefford1
Stanford University1,SLAC National Accelerator Laboratory2,Lawrence Berkeley National Laboratory3
For many important electrocatalytic reactions, activity is known to depend on electrolyte pH in a non-Nernstian manner. Possible explanations for this phenomenon include electric-field effects,<sup>1</sup> decoupled proton-electron transfer,<sup>2</sup> and competing reaction pathways.<sup>3</sup> In this talk, I will discuss our hybrid experimental-computational investigation of manganese oxide’s unique bifunctional OER/ORR activity, as well as its anomalous pH dependence. Our model system, -K<sub>0.1</sub>MnO<sub>2</sub>, is among the highest-performing Mn oxide catalysts for both the OER and the ORR, with ORR activity rivaling that of Pt in basic electrolytes.<sup>4</sup> Using a novel grand-canonical DFT approach, we show that a pH-dependent interfacial electric field weakens the adsorption of key OER/ORR intermediates, leading to a non-Nernstian shift in onset potential for both reactions. The material’s pH and cation-dependent activity is characterized via rotating ring disk electrochemistry (RRDE), HRTEM, and <i>operando</i> scanning transmission x-ray microscopy (STXM). Understanding the atomic-scale origins of this unique bifunctional activity may help enable higher performing, lower cost regenerative fuel cells and metal-air batteries. <br/><br/><br/>[1] Kelly, S.R. <i>et al.</i> <i>J. Phys. Chem. C.</i> <b>2020</b>, 124, 27, 14581–14591.<br/>[2] Giordano, L. <i>et al.</i> <i>Cat. Tod.</i> <b>2016</b>, <i>262</i>, 2–10.<br/>[3] Liu, X. <i>et al.</i> <i>Nat. Commun.</i> <b>2019</b>, <i>10</i> (32).<br/>[4] Meng, Y. <i>et al.</i> <i>J. Am. Chem. Soc.</i> <b>2014</b>, <i>136</i> (32), 11452–11464.