Dec 5, 2024
10:30am - 11:00am
Hynes, Level 3, Room 312
Georgios Sotiriou1
Karolinska Institutet1
Even though there is concentrated effort from nanotechnology research laboratories worldwide against cancer, there is only limited nano-related research against infections. This might be counter-intuitive due to the more deaths globally attributed to infections than cancer. Furthermore, because of the continuous use and abuse of antibiotics to fight infections, antimicrobial resistance in some bacterial strains (the so-called “superbugs”) has emerged. That constitutes the most serious public health threat today termed as “slow- motion catastrophe”. Therefore, there is an urgent societal need to provide innovative antimicrobial solutions as also highlighted by the WHO. Nanoscale materials offer advantages and solutions to this public health threat because they may exert antimicrobial action by multiple mechanisms rendering the emergence of antimicrobial resistance rather unlikely.<br/><br/>In this talk, I will highlight a few examples utilizing responsive nanomaterials against infections. This is explored using a nanomanufacturing process with proven scalability and reproducibility, flame aerosol technology [1-2], to assist rapid technology transfer to industry. We employ flame direct nanoparticle deposition on substrates and combine nanoparticle production and functional layer deposition in a single-step with close attention to product nanoparticle properties and assembly of devices [3,4]. For example, utilizing this technology, it is possible to develop nanomaterials as biosensors for physiological parameters (e.g. pH, H<sub>2</sub>O2) [5-7] relevant to bacterial infections or for food safety, as nano-enabled coatings on medical devices to eradicate bacterial biofilms [8,9,10], or even as drug nanocarriers for biologics (e.g. peptides, proteins) for localized treatments [11].<br/><br/>References<br/>[1] G. A. Sotiriou, D. Franco, D. Poulikakos, A. Ferrari, ACS Nano 6, 3888-3897 (2012).<br/>[2] G. A. Sotiriou, F. Starsich, A. Dasargyri, M. C. Wurnig, F. Krumeich, A. Boss, J.-C. Leroux, S. E. Pratsinis. Adv. Funct. Mater. 24, 2818-2827 (2014).<br/>[3] G. A. Sotiriou, C. O. Blattmann & S. E. Pratsinis, Adv. Funct. Mater. 23, 34-41 (2013).<br/>[4] D. F. Henning, P. Merkl, C. Yun, F. Iovino, L. Xie, E. Mouzourakis, C. Moularas, Y. Deligiannakis, B. Henriques-Normark, K. Leifer & G. A. Sotiriou. Biosens. Bioelectron. 132, 286-293 (2019).<br/>[5] A. Pratsinis, G. A. Kelesidis, S. Zuercher, F. Krumeich, S. Bolisetty, R. Mezzenga, J-C. Leroux & G. A. Sotiriou. ACS Nano 11, 12210-12218 (2017).<br/>[6] P . Merkl, M.-S. Aschtgen, B. Henriques-Normark & G. A. Sotiriou. Biosens. Bioelectron. 171, 112732 (2021).<br/>[7] H. Li, P. Merkl, J. Sommertune, T. Thersleff, & G. A Sotiriou. Adv. Sci. 2201133 (2022). [8] P. Merkl, S. Zhou, A. Zaganiaris, M. Shahata, A. Eleftheraki, T. Thersleff & G. A. Sotiriou. ACS Appl. Nano Mater. 4, 5330-5339 (2021).<br/>[9] F. J. Geissel, V. Platania, A. Gogos, I. K. Herrmann, G. N. Belibasakis, M. Chatzinikolaidou & G. A. Sotiriou. J. Colloid Interface Sci. 608, 3141-3150 (2022).<br/>[10] E. Bletsa, P. Merkl, T. Thersleff, S. Normark, B. Henriques-Normark & G. A. Sotiriou. Chem. Eng. J. 454, 139971 (2023).<br/>[11] V. Tsikourkitoudi, J. Karlsson, P. Merkl, E. Loh, B. Henriques-Normark & G. A. Sotiriou. Molecules 25, 1747 (2020).