Dec 2, 2024
11:00am - 11:30am
Sheraton, Third Floor, Commonwealth
Frederic Blanc1
University of Liverpool1
Li-containing materials providing fast Li ion transport pathways are fundamental in Li solid-state electrolytes and next-generation energy storage materials by implementing Li all-solid-state batteries. Collaborative computationally-guided materials discovery[1] has provided a workflow for identifying unexplored selection of elements containing Li ions[2,3]and designing new superionic Li solid-state electrolytes Li<sub>7</sub>Si<sub>2</sub>S<sub>7</sub>I[4] (and derivatives)[5] defined by two-anion packing.<br/>Li ions transport is the key sought physical properties and, in this contribution, we will reveal several efficient NMR methods to probe directly the Li ions dynamics in a range of recently discovered sulphides[2-6] and oxides[7]-containing materials. We exploit a range of variable temperature multinuclear (<sup>6</sup>Li and <sup>7</sup>Li) and multidimensional NMR approaches, such as line shape analysis, exchange phenomena, relaxometry measurements and spin-alignment echo, to determine the Li ion mobility pathways, including the dimensionality of the diffusion processes, and quantify Li ions jump rates. For example, these approaches deployed on (1): Li<sub>3</sub>AlS<sub>3</sub>[2] identify that Li ion diffusion is fast within the tetrahedral and tetrahedral/octahedral layers but slow between these layers limiting long range translational Li ion mobility;[8] these provide a framework for the further development of more highly conductive Li solid-state electrolytes such as Li<sub>4.3</sub>AlS<sub>3.3</sub>Cl<sub>0.7</sub>;[6] (2) Li<sub>3</sub>P<sub>5</sub>O<sub>14</sub> determine that the low coordinating Li site exchange with one another between adjacent layered Li<sub>6</sub>O<sub>16</sub><sup>26-</sup> chains and through the centre of the P<sub>12</sub>O<sub>36</sub><sup>12-</sup> rings forming a three-dimensional Li diffusion pathway.<br/><br/>[1] C. Collins <i>et al.,</i> <i>Nature</i> <b>2017</b>, 280. [2] J. Gamon <i>et al., Chem. Mater.</i> <b>2019</b>, 9699. [3] A. Vasylenko <i>et al.,</i> <i>Nat. Commun.</i> <b>2021</b>, 5561. [4] G. Han <i>et al.,</i> <i>Science</i> <b>2024</b>, 739. [5] G. Han <i>et al.,</i> <i>Angew. Chemie. </i><b>2024</b>, in press. [6] J. Gamon <i>et al.,</i> <i>Chem. Mater.</i><b>2021</b>, 8733. [7] G. Han <i>et al.,</i> <i>J. Am. Chem. Soc.</i> <b>2021</b>, 18216. [8] B. B. Duff <i>et al.,</i> <i>Chem. Mater.</i> <b>2023</b>, 27. [9] B. B. Duff <i>et al.,</i><i>Chem.</i><i> Mater.</i> <b>2024</b>, in press.