Dec 3, 2024
8:00pm - 10:00pm
Hynes, Level 1, Hall A
Amjad Alqahtani1,Davonne Henry1,Luke St. Marie1,Lubomir Havlicek2,Jakub Hruby2,Antonin Sojka2,Abdel El Fatimy3,David Kurt Gaskill4,Morgan Hale5,Ivan Nemec2,Petr Neugebauer2,Amy Liu1,Paola Barbara1
Georgetown University1,Brno University of Technology2,Université Mohammed VI Polytechnique3,University of Maryland4,Roanoke College5
Amjad Alqahtani1,Davonne Henry1,Luke St. Marie1,Lubomir Havlicek2,Jakub Hruby2,Antonin Sojka2,Abdel El Fatimy3,David Kurt Gaskill4,Morgan Hale5,Ivan Nemec2,Petr Neugebauer2,Amy Liu1,Paola Barbara1
Georgetown University1,Brno University of Technology2,Université Mohammed VI Polytechnique3,University of Maryland4,Roanoke College5
The unique magnetic properties of single-molecule magnets (SMMs) make them desirable candidates for quantum computing, high-density magnetic memory, and spintronics applications.<sup>1-3</sup> In all cases, we need to incorporate isolated or a few SMMs with suitable nanodevices that allow the detection and manipulation of their magnetic states. However, studies of SMMs have mostly focused on bulk crystals, and the development of hybrid SMM devices for an electric read-out of the magnetic state remains a sought-after milestone that has been achieved mainly for TbPc<sub>2</sub> at temperatures below 1 K.<sup>4-7</sup> Here we demonstrate electrical detection of magnetization switching for a modification of the archetypal SMM Mn<sub>12</sub>, up to 70 K. The detection is based on the supramolecular spin valve effect using graphene quantum dot (GQD) devices.<sup>8</sup> Moreover, we show that the exchange interaction between the molecules and the graphene, as well as the GQD-mediated intermolecular interaction, can be directly extracted from the electrical response. This work opens the way to an effective characterization of the quantum properties of different types of SMMs in a wide temperature range.<br/><br/><br/>References<br/>1. Bayliss, S. L. et al. Science 370, 1309-+(2020).<br/>2. Zadrozny, J. et al. Acs Central Science 1, 488-492 (2015)<br/>3. Bogani, L. et al. Nature Materials 7, 179-186 (2008)<br/>4. Urdampilleta, M. et al. Nature Materials 10, 502-506 (2011).<br/>5. Candini, A. et al. Nano Letters 11, 2634-2639 (2011).<br/>6. Vincent, R. et al. Nature 488, 357-360 (2012).<br/>7. Krainov, I. V. et al. Acs Nano 11, 6868-6880 (2017).<br/>8. El Fatimy, A. et al. Nature Nanotechnology 11, 335-+ (2016).