Dec 3, 2024
4:00pm - 4:15pm
Hynes, Level 2, Room 209
Kazunori Nishio1,Akira Aiba1,Yota Suzuki1,Kei Takihara1,Shigeru Kobayashi2,Ryo Nakayama2,Ryota Shimizu2,Taro Hitosugi2,1
Tokyo Institute of Technology1,The University of Tokyo2
Kazunori Nishio1,Akira Aiba1,Yota Suzuki1,Kei Takihara1,Shigeru Kobayashi2,Ryo Nakayama2,Ryota Shimizu2,Taro Hitosugi2,1
Tokyo Institute of Technology1,The University of Tokyo2
To accelerate materials exploration, machine learning, robotics, and data-driven experiments are underway worldwide. <sup>[1-5]</sup> In this study, we constructed a digital laboratory to collect experimental data on the synthesis process, measured properties, analytical results, and measurement conditions for studying solid-state thin-film materials. The features of the digital laboratory are summarized as follows:<br/>1. Each modular experimental device is physically connected, enabling fully automated processes from thin-film material synthesis to surface structure observation, compositional analysis, crystal structure evaluation, electrical conductivity, and optical property measurements.<br/>2. Data output from each measurement device is unified in XML format (MaiML: Measurement, Analysis, Instrument Markup Language <sup>[6]</sup>) and collected in a cloud-based database. Additionally, the data is analyzed and utilized by software in the cloud.<br/>3. Through machine learning and robots can autonomously conduct material discovery.<br/>We have previously reported the digital laboratory on the hardware.<sup><sub>[7]</sub></sup> In this presentation, we will explain the overall system configuration related to software, including data format collection in MaiML, a common data format of the Japanese Industrial Standards (JIS).<br/><br/><br/>References<br/>1. R. Shimizu, T. Hitosugi <i>et al</i>., APL Mater. 2020, <b>8</b>, 111110.<br/>2. S. Kobayashi, T. Hitosugi <i>et al</i>. ACS Materials Lett. 2023, <b>5</b>, 2711-2717.<br/>3. N. Ishizuki, T. Hitosugi <i>et al.</i>, STAM Methods, 2023, <b>3</b>, 2197519.<br/>4. R. Nakayama, T. Hitosugi <i>et al</i>., STAM Methods, 2022, <b>2</b>, 119-128.<br/>5. H. Xu, T. Hitosugi <i>et al</i>., STAM Methods, 2023, <b>3</b>, 2210251.<br/>6. S. Ichimura, J. Surf. Anal. 2019, <b>26</b>, 92-93.<br/>7. K. Nishio, T. Hitosugi <i>et al</i>., 2023 MRS Fall Meeting, DS01, 12<sup>th</sup> Nov.