Dec 3, 2024
8:00pm - 10:00pm
Hynes, Level 1, Hall A
Seho Yi1,Taegon Jeon1,Gyeong Ho Cha1,Young-Kyu Han2,Sung Chul Jung1
Pukyong National University1,Dongguk University2
Seho Yi1,Taegon Jeon1,Gyeong Ho Cha1,Young-Kyu Han2,Sung Chul Jung1
Pukyong National University1,Dongguk University2
Li-argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl is considered a promising solid electrolyte for all-solid-state batteries due to the low cost of raw materials, mechanical flexibility, and high ionic conductivity. Halide-rich argyrodites obtained by replacing S in Li<sub>6</sub>PS<sub>5</sub>Cl with Br have been reported to exhibit significantly improved conductivity compared to Li<sub>6</sub>PS<sub>5</sub>Cl. In this study, using density functional theory calculations and <i>ab</i> initio molecular dynamics simulations, we systematically investigated more than 300 Li<sub>6</sub>PS<sub>5</sub>Cl structures and 500 Br-substituted Li<sub>5.75</sub>PS<sub>4.75</sub>ClBr<sub>0.25</sub> structures and found that anion disorder greatly enhances the stability and conductivity of Li<sub>6</sub><sub>−<i>x</i></sub>PS<sub>5</sub><sub>−<i>x</i></sub>ClBr<i><sub>x</sub></i>. The most stable Li<sub>6</sub>PS<sub>5</sub>Cl and Li<sub>5.75</sub>PS<sub>4.75</sub>ClBr<sub>0.25</sub> structures have the highest level of anion disorder, with S, Cl, and Br anions evenly occupying the Wyckoff 4a and 4d sites. The anion disorder significantly increases Li conductivity in both Li<sub>6</sub>PS<sub>5</sub>Cl and Li<sub>5.75</sub>PS<sub>4.75</sub>ClBr<sub>0.25</sub> by activating all three types of Li jumps, i.e., doublet, intracage, and intercage, in Li-cage structures of argyrodite. The overlap of Li-cages in Li<sub>5.75</sub>PS<sub>4.75</sub>ClBr<sub>0.25</sub> creates a continuous diffusion path for Li ions, leading to about two times higher conductivity of Li<sub>5.75</sub>PS<sub>4.75</sub>ClBr<sub>0.25</sub> than Li<sub>6</sub>PS<sub>5</sub>Cl.<br/> <br/>[1] <i>J. Mater. Chem. A</i>, 2024, 12, 993