Dec 2, 2024
4:15pm - 4:30pm
Sheraton, Fifth Floor, Jamaica Pond
Rayan Chakraborty1,Peter Sercel2,Xixi Qin1,David Mitzi1,Volker Blum1
Duke University1,Center for Hybrid Organic Inorganic Semiconductors for Energy2
Rayan Chakraborty1,Peter Sercel2,Xixi Qin1,David Mitzi1,Volker Blum1
Duke University1,Center for Hybrid Organic Inorganic Semiconductors for Energy2
The crystalline symmetry plays a key role in determining the spin properties of charge carriers in solid-state structures that are required for realizing spin-optoelectronic effects.[1-4] In 2D organic-inorganic perovskites (2D-OIPs) with alternating layers of organic cations (A) and metal-halide octahedra ([BX<sub>6</sub>]<sup>4-</sup> ; B = Pb, Sn and X = Cl, Br, I), the structural symmetry and optoelectronic properties can be tailored by the non-covalent interactions.[5-10] Here, we show how organic ammonium cations with restricted rotational motions can introduce asymmetric polar distortion modes in the B – X layers. The inherent polarization modifies the local effective magnetic fields through the spin-orbit coupling effect, driving the momentum-dependent spin polarizations (spin textures) at the frontier electronic bands of the 2D-OIPs. To rationalize these spin textures, we developed an analytical model that quantifies the effect of the inter-layer coupling on spin properties in multi-quantum-well structures. The obtained correlation between the spin textures (simulated through first-principles calculations) in a set of 2D-OIPs with different symmetry elements and the non-covalent interactions that are responsible for those symmetry elements (analyzed from single crystal X-ray diffraction measurements) directs us toward a design strategy for obtaining 2D-OIP semiconductors with tunable band gaps and measurable spin-properties (e.g., spin splitting, spin lifetime, and spin localization) that are suitable for room-temperature spin-optoelectronic applications. <br/> <br/>1.Kepenekian, M. and Even, J. (2017) <i>J. Phys. Chem. Lett.</i> 8, 3362-3370.<br/>2.Tao, L.L. and Tsymbal, E.Y. (2018) <i>Nat. Commun.</i> 9, 2763.<br/>3.Wang, J.<i> et al.</i> (2019) <i>Nat. Commun.</i> 10, 129.<br/>4.Lu, H.<i> et al.</i> (2022) <i>Nat Rev Chem</i> 6, 470-485.<br/>5.Saparov, B. and Mitzi, D.B. (2016) <i>Chem. Rev.</i> 116, 4558-4596.<br/>6.Liu, C.<i> et al.</i> (2018) <i>Phys. Rev. Lett.</i> 121, 146401.<br/>7.Chakraborty, R.<i> et al.</i> (2021) <i>Chem. Mater.</i> 34, 288-296.<br/>8.Jana, M.K.<i> et al.</i> (2021) <i>Nat. Commun.</i> 12, 4982.<br/>9.Zhang, L.<i> et al.</i> (2022) <i>Nat. Photon.</i> 16, 529-537.<br/>10.Chakraborty, R.<i> et al.</i> (2023) <i>J. Am. Chem. Soc.</i> 145, 1378-1388.