December 1 - 6, 2024
Boston, Massachusetts
Symposium Supporters
2024 MRS Fall Meeting & Exhibit
SB05.05.05

The Hydrophilic Amorphous Layer Around Bone Apatite Promotes Osteogenesis

When and Where

Dec 4, 2024
4:15pm - 4:30pm
Hynes, Level 3, Room 312

Presenter(s)

Co-Author(s)

Stanislas Von Euw1,Kian Eichholz2,Olwyn Mahon2,Daniel Kelly2

University of Galway1,Trinity College Dublin, The University of Dublin2

Abstract

Stanislas Von Euw1,Kian Eichholz2,Olwyn Mahon2,Daniel Kelly2

University of Galway1,Trinity College Dublin, The University of Dublin2
Bone tissue can be regarded as a nanocomposite material primarily built from an organic collagenous matrix reinforced with inorganic apatite nanoparticles<sup>1</sup>. The function of bone apatite nanoparticles does not, however, simply boil down to mechanical reinforcement. There is growing appreciation that they are pivotal factors in the mechanisms underlying bone remodelling<sup>2</sup> and bone metastasis<sup>3</sup>, while they are also affected by certain metabolic bone diseases<sup>4</sup>. In this regard, biomaterial-based therapies aimed at regenerating damaged or diseased bones have long been using different forms of synthetic calcium phosphate particles to improve their overall performance<sup>5</sup>. However, from pre-clinical testing at the laboratory scale to clinical solutions, the aforementioned therapies are based on synthetic analogues that are often not biologically relevant as they tend to disregard the intricate complexity of biogenic calcium phosphates<sup>6–9</sup>, especially the fact that the composition, structure and other physicochemical characteristics of calcium phosphate particles in bone are heterogeneous in space and time<sup>10</sup>. Using a series of synthetic organic–inorganic nanocomposite materials containing well-defined proxies for biogenic calcium phosphate particles at the different stages of bone biomineralization, we show that human mesenchymal stem/stromal cells (hMSCs) osteogenesis is substantially enhanced when a hydrophilic amorphous layer is present at the surface of the calcium phosphate particles. This hydrophilic amorphous surface layer is naturally occurring around bone apatite nanoparticles<sup>6</sup> and, hence, may contribute to the so far unrivalled performance of autologous bone grafting procedures. These results offer a previously unexplored perspective around intrinsic osteoinductive properties and emphasize the critical importance of truly biomimetic designs for developing competitive biomaterials for bone healing. They also open new avenues to uncover the extent to which this hydrophilic amorphous surface layer may also regulate the behaviour of other types of cells and, in turn, influences a number of key bone physiological and pathological processes.<br/><br/><b>References:</b><br/>1. N. Reznikov, M. Bilton, L. Lari, M. M. Stevens, R. Kröger, <i>Science</i>. <b>360</b>, eaao2189 (2018).<br/>2. M. Robin, C. Almeida, T. Azaïs, B. Haye, C. Illoul, J. Lesieur, M.-M. Giraud-Guille, N. Nassif, C. Hélary, <i>Bone</i>. <b>88</b>, 146–156 (2016).<br/>3. F. He, A. E. Chiou, H. C. Loh, M. Lynch, B. R. Seo, Y. H. Song, M. J. Lee, R. Hoerth, E. L. Bortel, B. M. Willie, G. N. Duda, L. A. Estroff, A. Masic, W. Wagermaier, P. Fratzl, C. Fischbach, <i>Proc. Natl. Acad. Sci.</i> <b>114</b>, 10542–10547 (2017).<br/>4. P. Zeng, Y. Fu, Y. Pang, T. He, Y. Wu, R. Tang, A. Qin, X. Kong, <i>ACS Biomater. Sci. Eng.</i> <b>7</b>, 1159–1168 (2021).<br/>5. R. Z. LeGeros, <i>Clin. Orthop. Relat. Res.</i> <b>395</b> (2002) (available at https://journals.lww.com/clinorthop/Fulltext/2002/02000/Properties_of_Osteoconductive_Biomaterials_.9.aspx).<br/>6. Y. Wang, S. Von Euw, F. M. Fernandes, S. Cassaignon, M. Selmane, G. Laurent, G. Pehau-Arnaudet, C. Coelho, L. Bonhomme-Coury, M.-M. Giraud-Guille, F. Babonneau, T. Azaïs, N. Nassif, <i>Nat. Mater.</i> <b>12</b>, 1144–1153 (2013).<br/>7. K. A. DeRocher, P. J. M. Smeets, B. H. Goodge, M. J. Zachman, P. V. Balachandran, L. Stegbauer, M. J. Cohen, L. M. Gordon, J. M. Rondinelli, L. F. Kourkoutis, D. Joester, <i>Nature</i>. <b>583</b>, 66–71 (2020).<br/>8. L. M. Gordon, M. J. Cohen, K. W. MacRenaris, J. D. Pasteris, T. Seda, D. Joester, <i>Science</i>. <b>347</b>, 746–750 (2015).<br/>9. G. Cho, Y. Wu, J. L. Ackerman, <i>Science</i>. <b>300</b>, 1123–1127 (2003).<br/>10. M. J. Glimcher, <i>Rev. Mineral. Geochem.</i> <b>64</b>, 223–282 (2006).

Keywords

biomimetic | surface chemistry

Symposium Organizers

Gulden Camci-Unal, University of Massachusetts Lowell
Michelle Oyen, Washington University in St. Louis
Natesh Parashurama, University at Buffalo, The State University of New York
Janet Zoldan, The University of Texas at Austin

Session Chairs

Gulden Camci-Unal
Janet Zoldan

In this Session