Dec 5, 2024
4:00pm - 4:15pm
Sheraton, Second Floor, Back Bay B
Pournima Narayanan1,Manchen Hu1,Arynn Gallegos1,Linda Pucurimay1,Qi Zhou1,Emma Belliveau1,Ghada Ahmed1,Sebastian Fernandez1,William Michaels1,Natalia Murrietta1,Vongaishe Mutatu1,Demeng Feng2,Rabeeya Hamid2,Kyra Yap1,Tracy Schloemer1,Thomas Jaramillo1,Mikhail Kats2,Daniel Congreve1
Stanford University1,University of Wisconsin–Madison2
Pournima Narayanan1,Manchen Hu1,Arynn Gallegos1,Linda Pucurimay1,Qi Zhou1,Emma Belliveau1,Ghada Ahmed1,Sebastian Fernandez1,William Michaels1,Natalia Murrietta1,Vongaishe Mutatu1,Demeng Feng2,Rabeeya Hamid2,Kyra Yap1,Tracy Schloemer1,Thomas Jaramillo1,Mikhail Kats2,Daniel Congreve1
Stanford University1,University of Wisconsin–Madison2
Upconversion (UC) of near-infrared photons into visible photons can revolutionize state-of-the-art technologies in photovoltaics, night vision, anti-counterfeiting, photodetectors, and beyond. However, current solid-state triplet-triplet annihilation UC devices that rely on PbS quantum dots and organic semiconductor annihilators suffer from low absorption, low energy transfer rates, and highly parasitic back transfer processes which lead to low external quantum efficiencies (EQE). Here, we propose a device architecture which mitigates FRET-based back transfer to improve the EQE. We demonstrate the use of 5-tetracene carboxylic acid (TCA) as a ligand and blocker layer to drastically improve EQEs. Finally, the mechanism of improvement is deconvolved through spectroscopic studies of the system.