Dec 2, 2024
4:00pm - 4:30pm
Sheraton, Fifth Floor, Public Garden
Sergio Valenzuela1,5,Josef Svetlik1,2,Williams Savero Torres1,Lorenzo Camosi1,Franz Herling1,Thomas Guillet1,Kai Xu2,Juan Reparaz2,Vera Marinova3,Dimitre Dimitrov3,4,J.F. Sierra1
Catalan Institute of Nanoscience and Nanotechnology1,Universitat Autònoma de Barcelona2,Institute of Optical Materials and Technologies3,ISSP4,ICREA5
Sergio Valenzuela1,5,Josef Svetlik1,2,Williams Savero Torres1,Lorenzo Camosi1,Franz Herling1,Thomas Guillet1,Kai Xu2,Juan Reparaz2,Vera Marinova3,Dimitre Dimitrov3,4,J.F. Sierra1
Catalan Institute of Nanoscience and Nanotechnology1,Universitat Autònoma de Barcelona2,Institute of Optical Materials and Technologies3,ISSP4,ICREA5
The atomically thin nature of 2D materials opens exciting possibilities for designing van der Waals heterostructures through proximity effects arising from short-range interactions [1]. These heterostructures offer a versatile platform for customizing electrical, magnetic, optical, and spin transport properties, making them highly suitable for advanced spintronic applications [1,2]. The interplay between thin layers of magnetic and non-magnetic materials at their interfaces is particularly crucial for these functionalities. For example, hexagonal transition metal dichalcogenides such as WS<sub>2</sub> can induce valley-Zeeman spin-orbit coupling (SOC) in graphene, leading to spin lifetime anisotropy between in-plane and out-of-plane spin orientations [3] and spin Hall and inverse spin galvanic effects [4]. However, the inherent threefold symmetry of these materials often results in isotropic in-plane spin dynamics [5].<br/><br/>In our recent work, we demonstrate that low-symmetry heterostructures can induce unprecedented gate-tunable SOC in graphene, leading to remarkable modulation of the spin lifetime for in-plane spins at room temperature [6]. Such heterostructures also enable the generation of unconventional charge-to-spin conversion components [7].<br/><br/>In this presentation, I will discuss our approach to demonstrate proximity effects through spin transport dynamics, with a focus on spin relaxation anisotropy and charge-to-spin interconversion [8,9]. I will highlight the crucial role of crystal symmetry and how reduced-symmetry systems can lead to unconventional spin-orbit fields that influence these phenomena, providing new insights into the design and engineering of next-generation spintronic devices.<br/><br/><b>Acknowledgements: </b><br/>This research was supported by MICIU/AEI/10.13039/501100011033 through Grant No. PID2022-143162OB-I00.<br/><br/><b>References</b><br/>[1] J. F. Sierra <i>et al</i>., <i>Nature Nano</i>. <b>16</b>, 856–868 (2021)<br/>[2] H. Yang, S O. Valenzuela <i>et al</i>., <i>Nature</i> <b>606</b>, 663-673 (2022)<br/>[3] L. A. Benítez <i>et al</i>., <i>Nature Phys</i>. <b>14</b> (2018); <i>APL Materials</i> <b>7</b>, 120701 (2019)<br/>[4] L. A. Benítez <i>et al</i>., <i>Nature Mater</i>. <b>19</b>, 170 (2020)<br/>[5] M. Milivojević, <i>et al</i>., <i>arXiv:</i><i>2402.09045</i> (2024)<br/>[6] J. F. Sierra, J. Světlík, <i>et al. unpublished </i>(2024)<br/>[7] L. Camosi <i>et al.</i>, <i>2D Mater</i>. <b>9,</b> 035014 (2022)<br/>[8] B. Raes <i>et al., Nature Commun</i>. <b>7</b>, 11444 (2016)<br/>[9] W. Savero Torres <i>et al.</i>, <i>2D Mater</i>. 4<b>,</b> 041008 (2017)