Dec 2, 2024
11:15am - 11:30am
Sheraton, Second Floor, Republic A
Omar Abou El Kheir1,Debdipto Acharya1,Davide Campi1,Marco Bernasconi1
University of Milano-Bicocca1
Omar Abou El Kheir1,Debdipto Acharya1,Davide Campi1,Marco Bernasconi1
University of Milano-Bicocca1
Phase change alloys are among the most promising materials for the realization of artificial neurons<br/>and synapses for neuromorphic computing. In these applications, one exploits the different resistive<br/>levels that can be realized by full or partial crystallization of the amorphous phase upon application<br/>of current pulses. In a recent work [1], it was proposed that a superlattice (SL) geometry made of<br/>alternating layers of the phase change material Sb<sub>2</sub>Te<sub>3</sub> and more thermally stable confining layers of<br/>TiTe<sub>2</sub> woud exhibit superior properties for neuromorphic computing. However, Sb<sub>2</sub>Te<sub>3</sub> suffers from<br/>insufficient data retention due to its low crystallization temperature T<sub>x</sub> . Substituting Sb<sub>2</sub>Te<sub>3</sub> with a<br/>phase change compound with a higher T<sub>x</sub>, such as GeTe or Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST), seems an interesting<br/>option in this respect. Nanoconfinement might, however, alters the crystallization kinetics with<br/>respect to the bulk. In this contribution, we will discuss the results of molecular dynamics<br/>simulations of the crystallization process of Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> and GeTe [2] nanoconfined in geometries<br/>mimicking GST/TiTe<sub>2</sub> or GeTe/TiTe<sub>2</sub> superlattices. To this aim, we performed large scale<br/>simulations with machine learning interatomic potentials [3,4]. The simulations reveal that<br/>nanoconfinement induces a mild reduction in the crystal growth velocities which would not hinder<br/>the application of GST/TiTe<sub>2</sub> or GeTe/TiTe<sub>2</sub> heterostructures in neuromorphic devices with superior<br/>data retention.<br/>[1] K. Ding et al, Science 366, 210 (2019)<br/>[2] D. Acharya, O. Abou El Kheir, D. Campi, and M. Bernasconi , Sci. Rep. 14, 3224 (2024)<br/>[3] O. Abou El Kheir, L. Bonati, M. Parrinello, and M. Bernasconi, npj Comp. Mater. 10, 33 (2024)<br/>[4] S. Gabardi et al, J. Phys. Chem. C 121, 23827 (2017)