December 1 - 6, 2024
Boston, Massachusetts

Event Supporters

2024 MRS Fall Meeting & Exhibit
QT03.02.01

GeTe Ferroelectric Rashba Semiconductor—From Growth to Electronic Properties

When and Where

Dec 2, 2024
1:30pm - 2:00pm
Sheraton, Fifth Floor, The Fens

Presenter(s)

Co-Author(s)

Frédéric Leroy1,Boris Croes1,2,Alexandre Llopez1,Fabien Cheynis1,Stefano Curiotto1,Pierre Müller1,Yannick Fagot-Revurat3,Calvin Tagne Kaegom3,Bertrand Kierren3,Salia Cherifi-Hertel2,Olivier Thomas4,Thomas Cornelius4,Michaël Texier4,Sylvain Massabeau5,Jean-Marie George5

Centre interdisplinaire de Nanoscience de Marseille1,Institut de physique et chimie des Matériaux de Strasbourg2,Institut Jean Lamour3,Institut Matériaux Microélectronique Nanosciences de Provence4,Laboratoire Albert Fert5

Abstract

Frédéric Leroy1,Boris Croes1,2,Alexandre Llopez1,Fabien Cheynis1,Stefano Curiotto1,Pierre Müller1,Yannick Fagot-Revurat3,Calvin Tagne Kaegom3,Bertrand Kierren3,Salia Cherifi-Hertel2,Olivier Thomas4,Thomas Cornelius4,Michaël Texier4,Sylvain Massabeau5,Jean-Marie George5

Centre interdisplinaire de Nanoscience de Marseille1,Institut de physique et chimie des Matériaux de Strasbourg2,Institut Jean Lamour3,Institut Matériaux Microélectronique Nanosciences de Provence4,Laboratoire Albert Fert5
Among ferroelectrics, a new class of materials for spintronics has recently been introduced: The Ferroelectric Rashba semiconductors [1,2]. The main results, obtained on GeTe thin films, have demonstrated that reversal of the ferroelectric polarization leads to a change in the spin chirality of the band structure [3,4]. A spin-to-charge conversion has also been demonstrated at room temperature in ferromagnetic-GeTe structures [5-7].<br/>In this presentation, I will discuss the organization of ferroelectric nanodomains present in GeTe thin films grown on Si(111) [8], the type of domain wall and the structure of the interface with the substrate. Quasi-monocrystalline GeTe thin films can be produced on Si(111) by molecular beam epitaxy, by first depositing an atomic monolayer of Sb [9,10,11]. This substrate enables ferroelectric domains to be studied and controlled, as they are not limited by grain boundaries. Ferroelectric nanodomain volume fraction and domain size were measured by X-ray diffraction and low energy electron microscopy (LEEM) over a wide range of film thicknesses (10-1800 nm). Second harmonic generation (SHG) microscopy combined with polarimetric analysis revealed the local symmetry of these domains. Using high-resolution transmission electron microscopy (HR-TEM), we show that the domain walls are at 71° and that the GeTe/Si interface is stabilized by dislocations that relax the large parametric mismatch between the two crystal lattices. The reversible appearance/disappearance of ferroelectric nanodomains by thermal cycling, visualized by LEEM in situ, is attributed to thermal stresses induced by the thermal expansion differential between the two materials [12]. At last we demonstrate a giant Rashba effect in GeTe thin films by Angle Resolved Photo Emisson Spectroscopy for thin films down to a 1 nm thick layer. We also put in evidence significant THz emission through spin-to-charge conversion in a Fe/GeTe/Si(111) stack.<br/><br/><br/>[1] D. Di Sante et al., Adv. Mater. 2013, 25, 509<br/>[2] M. Liebmann et al. , Adv. Mater., 2016, 28, 560<br/>[3] C. Rinaldi et al., Nano Lett., 2018, 18, 2751<br/>[4] J. Krempasky et al., Phys. Rev. X, 2018 8, 021067<br/>[5] C. Rinaldi et al., APL Mater., 2016, 4, 032501<br/>[6] J. Slawinska et al., Phys. Rev. B., 2019, 99, 075306<br/>[7] S. Varotto et al., Nature Electronics, 2021, 4, 740<br/>[8] B. Croes et al., Phys. Rev. Materials, 2021, 5, 124415<br/>[9] R. Wang et al., J. Phys. Chem. C, 2014 118, 29724<br/>[10] B. Croes et al., Phys. Rev. Materials, 2022, 6, 064407<br/>[11] B. Croes et al., Phys. Rev. Materials, 2023, 7, 014409<br/>[12] B. Croes et al., J. Appl. Phys., 2023, 134, 204103

Keywords

electronic structure | molecular beam epitaxy (MBE)

Symposium Organizers

Paolo Bondavalli, Thales Research and Technology
Nadya Mason, The University of Chicago
Marco Minissale, CNRS
Pierre Seneor, Unité Mixte de Physique & Univ. Paris-Saclay

Session Chairs

Henri Jaffres
Pierre Seneor

In this Session