Dec 4, 2024
3:30pm - 4:00pm
Hynes, Level 3, Room 305
Jingsong Huang1,Yong-Hui Tian2,Mina Yoon1,Miklos Kertesz3,Yang Song4,Dale Hensley1,Peter Bonnesen1,Liangbo Liang1,Rui Qiao5,Arthur Baddorf1,Timothy Tschaplinski1,Nancy Eagle1,Zili Wu1,Harry Meyer III1,Miaofang Chi1,David Cullen1,Adam Rondinone6,Bobby Sumpter1
Oak Ridge National Laboratory1,Northwest University2,Georgetown University3,AMETEK, Inc.4,Virginia Tech5,Los Alamos National Laboratory6
Jingsong Huang1,Yong-Hui Tian2,Mina Yoon1,Miklos Kertesz3,Yang Song4,Dale Hensley1,Peter Bonnesen1,Liangbo Liang1,Rui Qiao5,Arthur Baddorf1,Timothy Tschaplinski1,Nancy Eagle1,Zili Wu1,Harry Meyer III1,Miaofang Chi1,David Cullen1,Adam Rondinone6,Bobby Sumpter1
Oak Ridge National Laboratory1,Northwest University2,Georgetown University3,AMETEK, Inc.4,Virginia Tech5,Los Alamos National Laboratory6
Nitrogen (N) doping in carbon materials yields carbon nanospikes (CNS) with tip sizes down to 1 nm, which enable electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) selectively to ethanol when coupled with Cu nanoparticles (CuNP),<sup>1</sup> and electrochemical N<sub>2</sub> reduction reaction (NRR) to ammonia if used alone.<sup>2</sup> Through joint experimental and theoretical studies, we uncovered the unusual effects of N doping that induce metallic properties in graphitic materials via unconventional interlayer covalent pi-pi bonding (so-called pancake bonding) and create an ultrastrong electric field at the sharp tips of CNS. In the first case, we identified that N-doped graphene (NGP) with various doping levels can form 2D covalent pancake bonds, significantly reducing interlayer separations.<sup>3</sup> The binding energies can be enhanced by 50% compared to pristine graphene, which relies mainly on van der Waals (vdW) interactions. This unusual chemical bonding results from the covalent pi-pi overlap across the vdW gap, while the individual layers maintain the in-plane pi-conjugation. In NGP-based graphite with the optimal doping level, the NGP layers are uniformly stacked, and the 3D bulk exhibits metallic characteristics in both in-plane and stacking directions, beneficial for enhancing electrode conductivity. In the second case, we found that N doping can afford the unique morphology of CNS, featuring intense folds and sharp spikes.<sup>4</sup> When coupled with electro-nucleated CuNP, CNS can electrochemically reduce CO<sub>2</sub> to ethanol at a rate of 286 μg cm<sup>-2</sup> h<sup>-1</sup> with a high selectivity of 84% and an overall Faradaic efficiency of 90%.<sup>1</sup> If used alone without cocatalysts, CNS can electrochemically reduce N<sub>2</sub> to ammonia at a rate of about 100 μg cm<sup>-2</sup> h<sup>-1</sup> under ambient conditions.<sup>2</sup> Using multiscale modeling efforts, we found that the strongly positive surface curvature at the sharp tips of CNS can produce an ultrastrong electric field above 10 V/nm, which is 10<sup>4</sup>x stronger than that in cloud-to-ground lightning. This ultrastrong electric field activates the otherwise inert and stable CO<sub>2</sub> and N<sub>2</sub> molecules, both characterized by the triple and double bonds, large ionization potentials, negative electron affinities, and relatively small proton affinities compared to solvent water molecules. The field effects also facilitate electron and proton transfers from CNS and solvent molecules, respectively. The insights gained offer valuable guidance for scientists aiming to enhance carbon-based nanomaterials through N doping toward practical technological applications.<br/><br/><b>Acknowledgments: </b>Part of this work was performed at the Center for Nanophase Materials Sciences, a US Department of Energy Office of Science User Facility.<br/><br/><b>References:</b><br/>1. Song, Y.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L.; Wu, Z.; Meyer III, H. M.; Chi, M.; Ma, C.; Sumpter, B. G.; Rondinone, A. J. <i>ChemistrySelect</i> <b>2016</b>, <i>1</i>, 6055-6061.<br/>2. Song, Y.; Johnson, D.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L.; Huang, J.; Yang, F.; Zhang, F.; Qiao, R.; Baddorf, A. P.; Tschaplinski, T. J.; Engle, N. L.; Hatzell, M. C.; Wu, Z.; Cullen, D. A.; Meyer III, H. M.; Sumpter, B. G.; Rondinone, A. J. <i>Sci. Adv.</i> <b>2018</b>, <i>4</i>, e1700336.<br/>3. Tian, Y.-H.; Huang, J.; Sheng, X.; Sumpter, B. G.; Yoon, M.; Kertesz, M. <i>Nano Lett.</i> <b>2015</b>, <i>15</i>, 5482-5491.<br/>4. Sheridan, L. B.; Hensley, D. K.; Lavrik, N. V.; Smith, S. C.; Schwartz, V.; Liang, C.; Wu, Z.; Meyer III, H. M.; Rondinone, A. J. <i>J. Electrochem. Soc.</i> <b>2014</b>, <i>161</i>, H558–H563.