Sayantan Maity1
Technion-Israel Institute of Technology1
The negatively charged nitrogen vacancy (NV
-) center in diamond is an excellent single photon emitter
1 and thus it has brought revolution in quantum sensing technologies,
2 biomarking,
3 and as a sensitive probe to magnetic field.
4 To achieve its best performance in quantum devices, we need to get an exact picture of the near-surface and subsurface region of nitrogen-populated diamond. This is essential since nitrogen-induced defects may be responsible for charge trapping which may destabilize the NV
- center.
5 On the other hand, the chemical composition of the diamond surface can cause the shifting of the Fermi level beyond the NV
- center.
6 Hence, one’s aim should be the creation of nitrogen terminated diamond, without forming substantial defect. Over the years, we achieved to the conclusion that, focused ion beam implantation is a profitable technique to get enriched N-terminated diamond of high purity.
7-9 Location and density of N atoms can be precisely controlled on the diamond surface through ion implantation, leading to the formation of long coherence time.
10In this work, considerable low energy (100 eV) positive nitrogen ions (N
2+) are irradiated on chemical-vapor-deposited (CVD-grown) polycrystalline diamond thin films at room temperature. We altered the ion dose within the range of 1 × 10
14 ions.cm
-2 to 2 × 10
15 ions.cm
-2. The bonding configuration of carbon and nitrogen and the chemical composition of the implanted layer are thoroughly scrutinized using X-Ray Photoelectron Spectroscopy (XPS). The thermal stability of the implanted layer and its different bonding configuration has also been examined. The results indicate that the controlled N
2+ dose of low ion energy can populate the near surface region effectively, with creating minimal defect and variable intensities of the different C-N components.
Reference1. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Phys. Rev. Lett. 2000, 85, 290-293.
2. S.J. DeVience, L.M. Pham, I. Lovchinsky, A.O. Sushkov, N. Bar-Gill, C. Belthangady, F. Casola, M. Corbett, H. Zhang, M. Lukin, H. Park, A. Yacoby, R. L. Walsworth, Nat. Nanotechnol. 2015, 10, 129-134.
3. C. C. Fu, H. Y. Lee, K. Chen, T. S. Lim, H. Y. Wu, P. K. Lin, P. K. Wei, P. H. Tsao, H. C. Chang, W. Fann, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 727.
4. J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, Nature 2008, 455, 644.
5. A. Stacey, N. Dontschuk, J.P. Chou, D.A. Broadway, A. K. Schenk, M.J. Sear, J. P. Tetienne, A. Hoffman, S. Prawer, C.I. Pakes, A. Tadich, N.P. de Leon, A. Gali, L.C. L. Hollenberg, Adv. Mater. Interfaces 2019, 6, 1801449.
6. M. V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J. A. Garrido, Phys. Rev. B 2011, 83, 081304.
7. M. K. Kuntumalla, A. Hoffman, Phys. Status Solidi A 2023, 2300319.
8. M. Fisher, S. Maity, M. K. Kuntumalla, G. Gani, A. Hoffman, Appl. Surf. Sci. 2024, 657, 159740.
9. M. Fisher, S. Maity, M. K. Kuntumalla, A. Hoffman, manuscript under suggested revision work, to be resubmitted in J. Phys. Chem. C.
10. E. D. Herbschleb, H. Kato, Y. Maruyama, T. Danjo, T. Makino, S. Yamasaki, I. Ohki, K. Hayashi, H. Morishita, M. Fujiwara, N. Mizuochi, Nat. Commun. 2019, 10, 3766.